

Biological desulfurization and methanation of biogas

Biogasclean is only 12 years old – but our technology is based on 4 billion years of evolution

Biogasclean - Danish Technology General presentation

Biogasclean in numbers

2 Locations

Headquarter and management in Denmark; engineering and production in Thailand

	1	
--	---	--

+25 employees Employees in Denmark, Thailand, Malaysia and Brazil

+285 References

In 40 different countries

+600 MW

Biogasclean supplies clean gas to more than 600 MW gas engines and boilers and removes sulfur from +20 upgrading plants

Our mission

Contribute to the transformation from fossil fuels to renewable energy by innovative and efficient production of biogas

Biogas contains:

GASELEAN

the key to efficient

utilization of biogas

and successful

50-70% methane (CH₄) 30-50% carbon dioxide (CO₂) 0.1% to 3% hydrogen sulfide (H₂S)

- Biogas is a renewable energy source like wind pover and solar power. But biogas is not only produced to provide renewable energy; the production of biogas is an integral part of sustainable treatment of organic waste from the production of the many products that are the prerequisite for our modern life.
- Furthermore, biogas has the great advantage that it can be produced all year round regardless of weather and wind and that the energy can be stored.
- Biogas is formed during anaerobic digestion of organic waste streams at livestock farms, food processing plants, breweries, palm oil mills, ethanol distilleries, paper mills, wastewater treatment plants and sorted household waste.
- When the H₂S is removed, biogas can substitute oil and gas and be used for power and heat production or upgraded to natural gas quality.
- Already today 20% of Denmarks' gas consumption is biomethane.

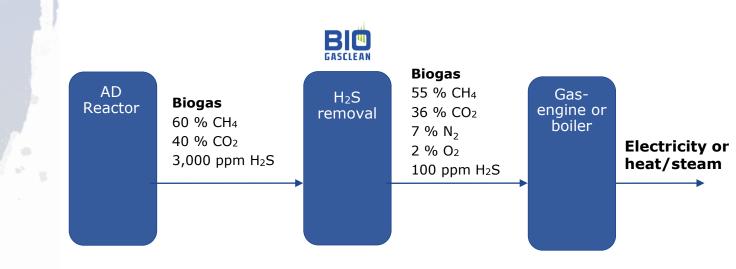
GASELEAN

What is hydrogen sulfide (H₂S)?

- Wastewater streams contain different amounts of sulfur compounds. Under atmospheric conditions – in the presence of oxygen - the sulfur is mainly bound as sulfate (SO₄) and dissolved in the wastewater.
- In the anaerobic digesters the organic matters are degraded by anaerobic bacteria. In the absence of oxygen the sulfate is converted to hydrogen sulfide (H₂S) which is a gas.
- Thus, after the anaerobic digestion process, the sulfur compounds present in the inlet stream leave the reactor through the biogas as H_2S .
- Typically, the H_2S in the biogas will be in the range from 0.1% to 3.0% (1,000-30,000 ppm).

"H₂S occurs as a natural part of the AD process in the reactor"

"H₂S is poisonous, corrosive, and flammable"

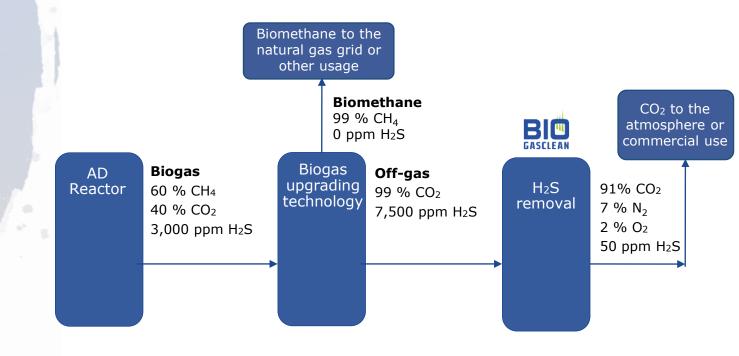

Removal of H₂S from biogas

Why it is mandatory to remove H₂S from biogas

GASCLEAN

 H_2S will form sulfur dioxide (SO₂) and sulfuric acid (H_2SO_4) during combustion which results in a very aggressive corrosion. The corrosion will literally reduce the lifetime of the downstream equipment by years! This is why gas engine manufacturers require that H_2S in the clean gas must not exceed 100-250 ppm. Otherwise, operating costs for change of engine oil, sparkplugs and other maintenance will increase significantly.

- Biogas is typically used in gas engines for heat and power production (CHP) or in boilers for steam or power production.
- During combustion the H₂S will convert to H₂SO₄ (sulfuric acid). This acid is extremely corrosive and will destroy the engine or boiler in a very short time. Therefore, it is absolutely necessary to remove the H₂S before combustion.



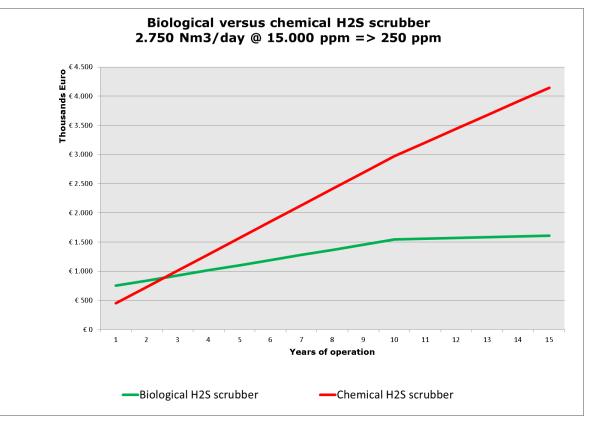
Removal of H₂S from CO₂

Why it is mandatory to remove H₂S from CO₂

GASCLEAN

Air quality standards are another driver for H_2S removal. Combustion of un-cleaned biogas will result in sulfur dioxide (SO₂) emissions which causes serious odor problems as well as acid rain. Also health and safety standards require H_2S removal as H_2S is toxic even in small concentrations. In upgrading projects the biogas is converted to biomethane or Renewable Natural Gas (RNG) by separating the CO₂ from CH₄. The H₂S will follow the CO₂ stream. Before releasing the CO₂ into the atmosphere the H₂S has to be removed.

The advantages of biological H₂S removal

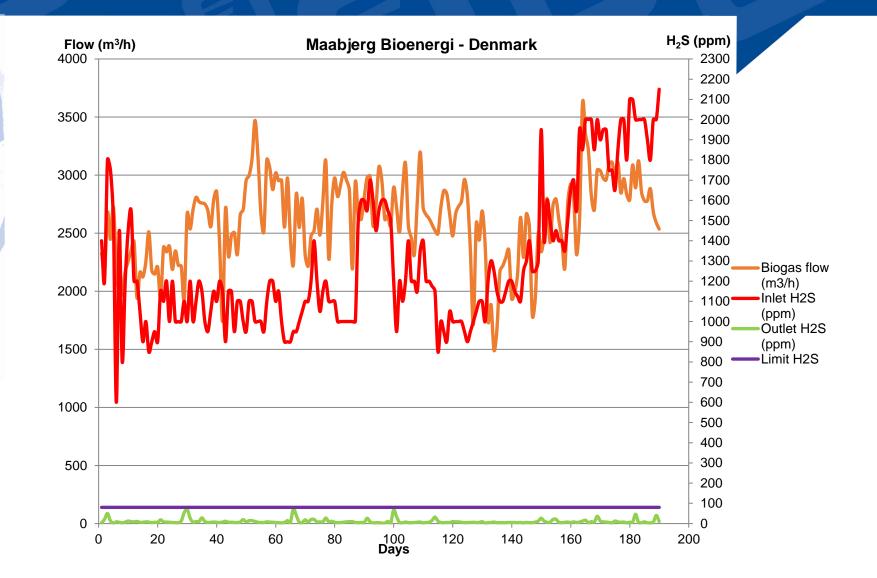

The advantages of biological desulfurization

The H_2S removal process is 100% free of chemicals and OPEX are only **10-20%** of chemical gas cleaning systems.

Just comparing alternative technologies on CAPEX doesn't make sense – when you include OPEX for the lifetime of your project biological H_2S removal is much more cost effective than chemical gas cleaning.

The only residue from the process is a **sulfur rich fertilizer** which can be **recycled** together with the treated waste water **supplementing or replacing industrial fertilizers.**

• CAPEX and OPEX for biological and chemical gas cleaning



BIU and successful utilization of biogas

Efficient and robust H₂S removal

Performance guarantee

In this project Biogasclean guaranteed max. 80 ppm H_2S in the clean gas. The performance was measured over 6 months. The outlet did never exceed the guaranteed max. 80 ppm H_2S .

MUW - Make Up Water

Running the biological H₂S removal proces on digestate gives ultra low OPEX

GASELEAN

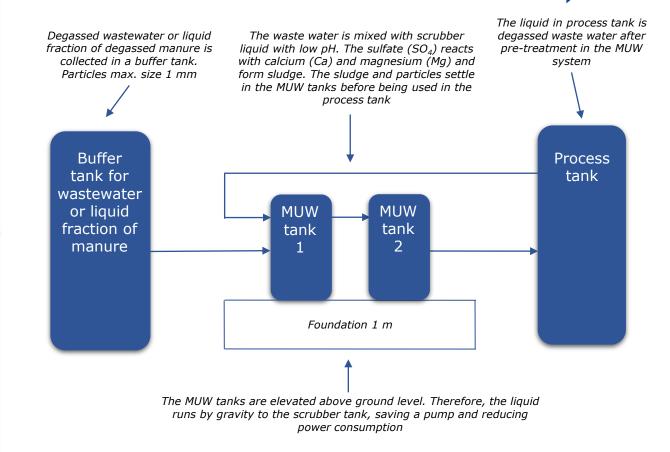
Biological H₂S removal has much lower OPEX than chemical gas cleaning. In addition to a small power consumption the biological process requires supply of liquid and nutrients. Normally this is supplied as water + NPK fertilizer. But with prober pre-treatment degassed water (digestate) can be used instead.

Waste water with small amounts of particles (palmoil, cassava, paper & pulp) only requires a simple screening. Waste water with significant amounts of particles (pig and cattle manure) requires separation into a liquid and solid fraction by screw press or decanter.

After removal of particles the degassed waste water is processed in the MUW system before being used af scrubber liquid.

- The Make Up Water technology allows you to use degassed waste water or the liquid fraction of separated degassed manure.
- Biogasclean has supplied the MUW system to more than 150 biogas plants.

MUW system at Lundsby Biogas Vinkel Bioenergy, Denmark


Make Up Water - how does it work?

Significant savings

Using treated water does not only generate a direct saving in water and NPK fertilizer. It also causes that the degassed manure is not diluted by water. This reduces the amount of degassed manure to be transported from the biogas plant to the farmer and the amount to be applied to the fields.

Raw biogas (Nm³/h)	1,000	2,000	3,000	4,000	5,000
Savings (EUR/y)	11,000	22,000	33,000	45,000	56,000

Saving the environment and money at the same time

QSR - Quick Sludge Removal

QSR

Biogasclean is the only company offering the QSR[®] cleaning for efficient cleaning of the packing media inside the tank.

During cleaning the tank is filled with water and pressurized air injected and the packing media is washed like in a big washing machine.

In other biological H_2S removal systems the packing media has to be moved and cleaned outside the tank. This is a dirty job and will have a huge negative impact on the uptime.

The biological desulfurization process produces sulfate (SO₄) and elemental sulfur (S). The SO₄ is drained out but the elemental sulfur will stick to the packing media and has to be removed on a regular bais. Biogasclean's QSR technique is a vast improvement. Cleaning is required 2-3 times a year and can be done within one working day.

Before QSR

Compressed air

Process

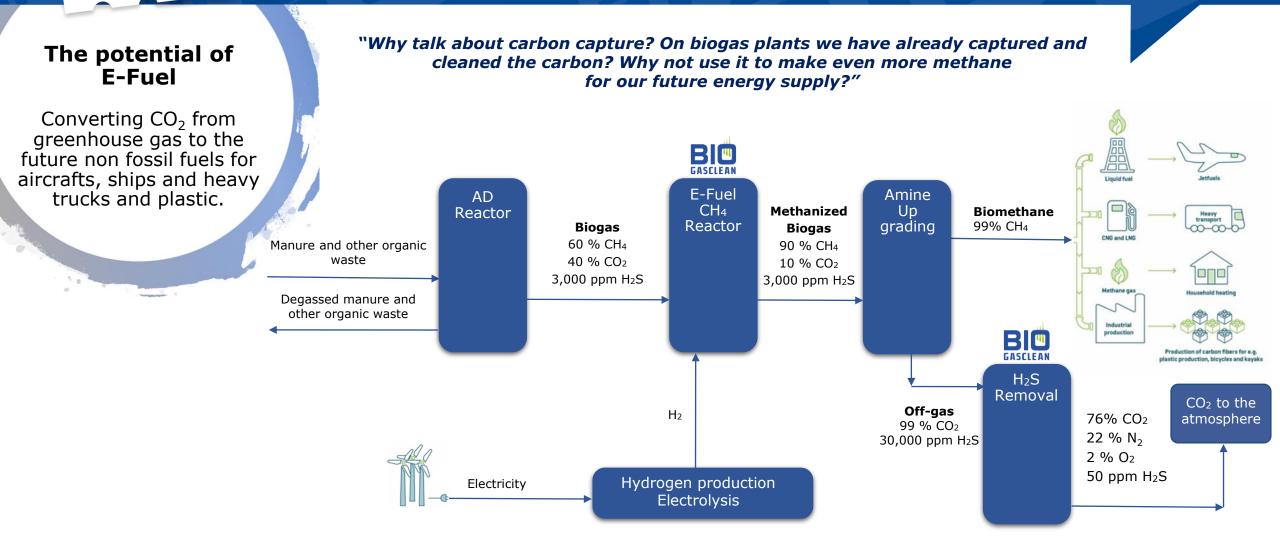
tank

Filled

with

water

After QSR


Danish model of amine upgrading with biological H₂S removal - advantages

Highest effiency and lowest OPEX

Amine upgrading of the raw biogas together with H_2S removal from the CO_2 stream (offgas) provides the highest methane efficiency and the lowest OPEX.

- Highest possible methane recovery: >99.9%
- Lowest electricity consumption: <0.13 kWh/m³ raw biogas
- Net heat consumption: 0.1 0.2 kWh/m³ raw biogas
- No need for pretreatment of the raw biogas
- No need for high pressure of the raw biogas
- Valuable integration between Biogasclean and the amine upgrading plant (reuse of low temperature water, control signals, pressurized and warm off-gas, etc.)

E-Fuel the future of Power-To-X (P2X)

the key to efficient

utilization of biogas

and successful

GASCLEAN

E-Fuel at Nature Energy Holsted, Denmark

Electrolyzer from Green Hydrogen Systems

BIU and successful utilization of biogas

References

285 references in 40 countries

Country	No.
Thailand	59
Malaysia	57
Indonesia	40
Denmark	33
USA	15
Other markets	81
TOTAL	285
	Thailand Malaysia Indonesia Denmark USA Other markets

No.	Substrate	Typical H ₂ S load ppm	No.
1	Palm oil waste water	3,000	116
2	Animal waste	2,000 - 5,000	58
3	Public WWTPs	2,000 - 5,000	35
4	Cassava waste water	3,000	34
5	Ethanol distillery - molasses	20,000 - 30,000	16
6	Food industry waste water	3,000 - 10,000	11
7	Paper & pulp	10,000 - 20,000	6
8	Breweries	3,000	4
9	Ethanol distillery - cassava & wheat	3,000 - 5,000	2
10	Landfills	1,500	2
11	Petro gas	1,500	1
	TOTAL		285

Client: Nature Energy, Månsson Application: Grid injection Location: Brande, Denmark Year: 2017 Project: 41206

CO₂ flow: 600 m³/h **CO₂ flow:** 352 scfm **H₂S inlet:** 7,500 ppm **H₂S outlet:** 50 ppm

References QSR

Client: Lundsby Biogas, Vinkel Application: Grid injection Location: Skive, Denmark Year: 2019 Project: 41245

CO₂ flow: 2,700 m³/h **CO₂ flow:** 1,588 scfm **H₂S inlet:** 6,700 ppm **H₂S outlet:** 30 ppm

Client: Nature Energy, Korskro Sector: Grind injection Location: Esbjerg, Denmark Year: 2018 Project: 41228

CO₂ flow: 2,000 m³/h **CO₂ flow:** 1,176 scfm **H₂S inlet:** 8,000 ppm **H₂S outlet:** 50 ppm

Production of 22 million m³ (777 million scf) CH_4 per year The CO₂ is utilized in breweries

Client: E.ON - Greenlab Application: Grid injection Location: Skive, Denmark Year: 2020 Project: 41247

CO₂ flow: 2,250 m³/h **CO₂ flow:** 1,323 scfm **H₂S inlet:** 7,400 ppm **H₂S outlet:** 50 ppm

Client: Nature Energy, Glansager Application: Grid injection Location: Sønderborg, Denmark Year: 2020 Project: 41269

CO₂ flow: 2,160 m³/h **CO₂ flow:** 1,270 scfm **H₂S inlet:** 7,500 ppm **H₂S outlet:** 50 ppm

Client: MEC Biogas Sector: Livestock and Co-digestion Location: Maabjerg, Denmark Year: 2012 Project: 41063

Biogas flow: 3,600 m³/h **Biogas flow:** 2,117 scfm **H₂S inlet:** 3,000 ppm **H₂S outlet:** 80 ppm

Client: Clarke Energy Enduser: Freemont Sector: Food industry Location: Michigan, USA Year: 2012 Project: 41066

Biogas flow: 1,360 m³/h **Biogas flow:** 800 scfm **H₂S inlet:** 3,000 ppm **H₂S outlet:** 200 ppm

BIU and successful utilization of biogas

References QSR

Client: Clarke Energy Enduser: MMPA, Hometown Bioenergy Sector: WWTP Location: Minnesota, USA Year: 2013 Project: 41098

Biogas flow: 3,900 m³/h **Biogas flow:** 2,294 scfm **H₂S inlet:** 2,500 ppm **H₂S outlet:** 200 ppm

Client: Eneraque Sector: Livestock Location: New South Wales, Australia Year: 2018 Project: 41230

Biogas flow: 1,200 m³/h **Biogas flow:** 705 scfm **H₂S inlet:** 4,000 ppm **H₂S outlet:** 150 ppm

References OS

Client: ADI Systems Enduser: Slave Lake Pulp Sector: Paper and pulp Location: Alberta, Canada Year: 2015 Project: 41101

Biogas flow: 1,846 m³/h **Biogas flow:** 1,085 scfm **H₂S inlet:** 20,000 ppm **H₂S outlet:** 100 ppm

References MBR

Client: Power Solutions Technologies (PSTC) Sector: Ethanol molasses Location: Arun, Thailand Year: 2017 Project: 41209

Biogas flow: 3,000 m³/h **Biogas flow:** 1,764 scfm **H₂S inlet:** 15,000 ppm **H₂S outlet:** 200 ppm

References MBR

Client: KSL Green Innovation PLC (KSL) Sector: Ethanol molasses Location: Boploy, Thailand Year: 2019 Project: 41237

Biogas flow: 3,000 m³/h **Biogas flow:** 1,764 scfm **H₂S inlet:** 20,000 ppm **H₂S outlet:** 200 ppm

